
WebLicht-Batch – A Web-Based Interface for
Batch Processing Large Input with the
WebLicht Workflow Engine

Claus Zinn and Ben Campbell

CLARIN 2022, Prague

Seminar für Sprachwissenschaft

| 2WebLicht-Batch – CLARIN 2022, Prague

Motivation

• WebLicht, a widely-used, web-based tool to create and execute tools chains
for linguistic analysis

• Reigns over dynamic, distributed tool space, each tool with varying capabilities
to process larger bits of data

• Ensure smooth, fair use, avoid time-outs

Ø Support required to allow use of WebLicht with “big” data
Ø and also, support for users with multiple file input (batch processing)

| 3WebLicht-Batch – CLARIN 2022, Prague

WebLicht SOA Architecture

Dynamic
tool
space

| 4WebLicht-Batch – CLARIN 2022, Prague

TCF format (example)

| 5WebLicht-Batch – CLARIN 2022, Prague

WebLicht History & Impact

• Since its inception, WebLicht has attracted a large user community in research & teaching
• Since 2014, WebLicht services have been invoked 2.5 million times in total,

• with an average of 30.000 invocations per month
• 72.000 unique addresses

Ø Usability and performance matter, dynamic & distributed tool space makes it hard(er)
• not all tools cope well with large input

| 6WebLicht-Batch – CLARIN 2022, Prague

Underlying Idea: Divide and conquer

| 7WebLicht-Batch – CLARIN 2022, Prague

Technical Details (back-end)

• split input file into chunks of 100kb
• splitting at sentence boundaries creates chicken-and-egg problem
Ø use of UDPipe tokeniser and sentence splitter

• send 100kb to UDPipe
• assume that last sentence is incomplete sentence
• add it to the beginning of next chunk

• for all chunks obtained, batch-process 4 of them “simultaneously”:
• if processing of a chunk failed, 2 other attempts are made
• three failures in a row, batch fails

• if all batches succeed, resulting output TCFs are recombined into complex TCF
• TCF of individual runs must be manipulated to ensure all token id etc. are correct.

• for a zip file of text files, this process is repeated for each file

| 8WebLicht-Batch – CLARIN 2022, Prague

Front-end

1. Upload file
2. Select language
3. Select easy-chain

• or upload your own chain

• 200kb file split into batch of three
• Processing information updated
• User key for copy-paste

• to check progress later
• even after closed browser

| 9WebLicht-Batch – CLARIN 2022, Prague

Discussion

• Use of WaaS rather than WebLicht-GUI
• for sets of small files, some users (or use cases) may prefer WaaS
• for a large file, WaaS delegates file splitting at sentence boundaries and

combination of individual TCF files into a compound TCF to its users
• this is a non-trivial task

• WaaS does not help when a tool is crashing on larger input
• Divide and conquer seems like the only feasible approach

• given the dynamic and distributed tool space

• EUDAT-Generic Execution Framework
• move tools to the data rather than the data to the tools
• configure GEF environment of tools with direct access to the data

| 10WebLicht-Batch – CLARIN 2022, Prague

Future Work

• most services that are part of WebLicht’s easy-chains are installed locally at
institutional servers using Docker technology.

Ø use Docker to spawn new workers of a given service on the fly giving a rising
demand from WebLicht-Batch users

• a large WebLicht-Batch process could block regular WebLicht GUI users from
getting their (smallish) input processed in time.

Ø batch processing may want to postpone heavy processing to a point in time where
Docker-based services are idle

Ø scheduling option for users? Give users time slots where processing is faster

• often one bottleneck service per easychain
Ø give complex services more CPU time than simpler ones

| 11WebLicht-Batch – CLARIN 2022, Prague

WebLicht-Batch -- Demonstration

• https://weblicht.sfs.uni-tuebingen.de/weblicht-batch/
• Feedback welcome, email claus.zinn@uni-tuebingen.de for feedback

Questions?

https://weblicht.sfs.uni-tuebingen.de/weblicht-batch/
mailto:claus.zinn@uni-tuebingen.de

